A novel role for plasmin-mediated degradation of opsonizing antibody in the evasion of host immunity by virulent, but not attenuated, Francisella tularensis.
نویسندگان
چکیده
Opsonization by Abs represents a critical component of the host immune response against many pathogens. The mechanisms by which virulent microbes evade this protective response are not completely understood. In disease mediated by Francisella tularensis, Ab can effectively protect against infections with attenuated strains, for example, LVS, but not virulent strains such as SchuS4. Thus, it is likely that SchuS4 has mechanisms, which are not present in LVS, that allow evasion of opsonization by Ab, dampening the protective effects of these host molecules. Here we demonstrate that evasion of Ab-mediated opsonization and phagocytosis by the highly virulent SchuS4 is associated with its ability to bind the host serine protease plasmin. SchuS4, but not the closely related LVS, bound active plasmin. Plasmin bound SchuS4 degraded exogenous and opsonizing Abs, whereas LVS failed to do so. Furthermore, plasmin-mediated inhibition of Ab opsonization by SchuS4 also inhibited Ab-mediated uptake of this bacterium by macrophages. Ab-mediated uptake of uncoated and opsonized SchuS4 elicited a strong proinflammatory response in infected macrophages. However, plasmin-coated, opsonized SchuS4 poorly elicited production of these protective proinflammatory cytokines. This unique host-pathogen interplay is a novel immune evasion strategy utilized by virulent F. tularensis, and it provides one explanation for the ability of Ab to protect against attenuated, but not virulent, strains of F. tularensis. This mechanism may also represent a more common hereto unrecognized strategy by which virulent bacteria evade detection and clearance by Ig.
منابع مشابه
Francisella tularensis SchuS4 and SchuS4 lipids inhibit IL-12p40 in primary human dendritic cells by inhibition of IRF1 and IRF8.
Induction of innate immunity is essential for host survival of infection. Evasion and inhibition of innate immunity constitute a strategy used by pathogens, such as the highly virulent bacterium Francisella tularensis, to ensure their replication and transmission. The mechanism and bacterial components responsible for this suppression of innate immunity by F. tularensis are not defined. In this...
متن کاملKdo Hydrolase Is Required for Francisella tularensis Virulence and Evasion of TLR2-Mediated Innate Immunity
UNLABELLED The highly virulent Francisella tularensis subsp. tularensis has been classified as a category A bioterrorism agent. A live vaccine strain (LVS) has been developed but remains unlicensed in the United States because of an incomplete understanding of its attenuation. Lipopolysaccharide (LPS) modification is a common strategy employed by bacterial pathogens to avoid innate immunity. A ...
متن کاملAlternative Activation of Macrophages and Induction of Arginase Are Not Components of Pathogenesis Mediated by Francisella Species
Virulent Francisella tularensis ssp tularensis is an intracellular, Gram negative bacterium that causes acute lethal disease following inhalation of fewer than 15 organisms. Pathogenicity of Francisella infections is tied to its unique ability to evade and suppress inflammatory responses in host cells. It has been proposed that induction of alternative activation of infected macrophages is a me...
متن کاملExploitation of Host Cell Biology and Evasion of Immunity by Francisella Tularensis
Francisella tularensis is an intracellular bacterium that infects humans and many small mammals. During infection, F. tularensis replicates predominantly in macrophages but also proliferate in other cell types. Entry into host cells is mediate by various receptors. Complement-opsonized F. tularensis enters into macrophages by looping phagocytosis. Uptake is mediated in part by Syk, which may ac...
متن کاملA Francisella tularensis locus required for spermine responsiveness is necessary for virulence.
Tularemia is a debilitating febrile illness caused by the category A biodefense agent Francisella tularensis. This pathogen infects over 250 different hosts, has a low infectious dose, and causes high morbidity and mortality. Our understanding of the mechanisms by which F. tularensis senses and adapts to host environments is incomplete. Polyamines, including spermine, regulate the interactions ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 183 7 شماره
صفحات -
تاریخ انتشار 2009